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Outline
• Data assimilation works by using model-data

misfits to correct the model state of the system
• The causes of some of the observed variability

are not reflected in the model, and that portion of
the observed variability cannot be usefully
assimilated

• We propose a method for constructing statistical
error estimates that account for representation
error explicitly

• We describe the results of our first
implementation of our methods within the
framework of the operational climate forecast
system.
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Estimating Representation Er-
ror

1. Compute multivariate EOFs of a 16 year run of
the ocean component of CFS

2. Estimate number of significant degrees of
freedom (DOF) by the Preisendorfer test. The
span of the significant DOF is the "model space"

3. Project a series of model-data misfits into the
model space. Assume: innovations - their
projections on the model space = instrument error
+ representation error.

4. The significant EOFs of the the innovations -
their projections into model space are assumed to
span the space of representation errors.
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Surface Variability
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Representation Error EOFs

Preisendorfer test shows 106 significant EOFs, about
75% of the total misfit variance.
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The New Assimilation Scheme
• Assimilate data by 3DVAR:

J =
1

2
(x − x

(b))TE−1(x − x
(b)) +

1

2
(z − Hx)TF−1(z − Hx)

δJ = δxT

(

E−1(x − x
(b)) − HTF−1(z − Hx)

)

∇J = E−1(x − x
(b)) − HTF−1(z − Hx)

• Obs error covarianceF appears only in the term
HTF−1(z − Hx)

• Write F = D + uuT whereD is diagonal and
columns ofu span representation error space.
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Effect of Augmentation of F
• Calculation ofF−1 will be inexpensive.
• Example: a 1D representation error subspace

• Let F = σ2I + uuT , σ2 the obs error variance
andu a vector withuTu = r2 > σ2. The
Sherman-Morrison formula:

(σ2I + uuT )−1 =
1

σ2

(

I −
uuT

σ2 + uTu

)

• Multiplying the innovation byF−1 will thus have
the effect of damping the component parallel tou
by a factor ofσ2/(r2 + σ2) << 1

• We work with 106 basis vectors and apply the
generalized S-M formula
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Results from New 3DVAR
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Projection into Representation
Error Space
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Projection into Representation
Error Space
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Misfit-Representation Error
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Misfit-Representation Error
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Summary
• We have devised a methods for estimating the

statistics of representation error for OGCMs
• Following a first experiment in the north Pacific,

we have incorporated our representation error
estimates into a 3DVAR data assimilation scheme
applied to0.5o global MOM4

• First results show the scheme behaving as
expected, i.e., the representation error accounts
for a significant fraction of the variance of the
misfit

• The patterns assigned to representation error are
evidently not participating in the assimilation
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Next Steps
• Simulate representation error as an autoregressive

process
• Model SST as a sum of model output and

simulated representation error
• Ensemble experiments
• The EnKF
• Extend to use with altimeter data
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nagging worries
• drifts and biases
• underestimate of model capabilities due to

limitations of available data sets
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Future directions
• Extension to estimation of model error
• Investigation of response of model atmosphere
• Climate applications
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